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1.0 EXECUTIVE SUMMARY

This research project has as its main goal the development

of method(s) for selecting the damping characteristics of

components of a large structure or multibody system, in such a way

as to produce some desired system damping characteristics. The

main need for such an analytical device is in the simulation of

the dynamics of multibody systems consisting, at least partially,

of flexible components. The reason for this need is that all

existing simulation codes for multibody systems require component-

by-component characterization of complex systems, whereas

requirements (including damping) often appear at the overall

system level.

The main goal was met in large part by the development of a

method that will in fact synthesize component damping matrices

from a given system damping matrix. The restrictions to the

method are that the desired system damping matrix must be diagonal

(which is almost always the case) and that interbody connections

must be by simple hinges.

In addition to the technical outcome, this project

contributed positively to the educational and research

infrastructure of Tuskegee University - a Historically Black

Institution. All the students supported under this grant completed

their degrees, and the pieces of equipment purchased via this

project are being used to expand research efforts in System and

Structural Dynamics.
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2.0 INTRODUCTION

Many engineering systems comprise

together, with active control between bodies. Specific examples

of such systems include robots and manipulators, space vehicles,

missiles, and precision pointing systems. Because of the

increasing tendency towards lightweight components, many such

systems are partially or totally composed of flexible bodies. The

dynamics of such systems can be studied by experimentation or

analysis, or, preferably, both. When an analytical approach is

used, modeling is usually one of the first issues to be addressed.

In the study of a complex structure or a system of interconnected

flexible bodies, most modeling strategies rely on a finite

dimensional representation of each flexible component; and the

smaller the dimension, the more tractable the analysis. Structural

damping is one of the most poorly understood parameters of a

structure. Very often it is simply ignored. When this is not

possible, such as when one is interested in stability issues for

an actively controlled structure, damping is introduced in an ad

hoc fashion, usually in the form of a system damping matrix, which

is assumed to be diagonal. A rule of thumb is then used to assign

values to the diagonal elements, which generally represent the

damping ratio corresponding to each retained mode of the

structure.

several bodies connected

There are situations where one is compelled to work with

components of a structure. Such a situation may arise in the

analysis of a large structure such as an aircraft or a space

station; here, it is common practice to assign different

components of the structure to different analysts. And, if modal

viewpoint is adopted, modal information, including damping

information is needed at the component level. A similar situation

arises when it is desired to simulate the motions of a system of

interconnected, actively controlled flexible bodies, using a

simulation package such as DISCOS[I] or TREETOPS[2]. These

programs require that each body in a given system be characterized



separately. That is, mass, stiffness, and damping matrices of

each component of the system must be supplied separately to the

program. Generally, it is desired to have a diagonal damping

matrix for the whole system with each element having a specified

value (usually 1%). Knowing what is desired for the system

damping matrix, there still remains a major task of determining

the values that must be assigned to the component damping matrices
such that when they are assembled, they yield the desired system

damping matrix. Experience with structural analysis and

simulation of the Galileo spacecraft[3,4] has shown that using

component damping matrices that are diagonal leads to a system

damping matrix that is far from being sparse.

3.0 OBJECTIVE AND PROBLEM STATEMENT

The principal objective of this research project is to

search for a reliable, systematic, and efficient procedure for

generating the damping matrices that must be assigned to the

components of a given large structure so that the damping matrix

of the structure as a whole (system damping matrix) has any

desired form and content. The secondary objective is to initiate

a fundamental re-evaluation of current methods of representing

damping in structures, and indicate a path for future research in

this area.

The problem to be solved is really an offshoot of a bigger

problem. The big problem is that of simulating the dynamics of a

system of coupled rigid/flexible bodies. This simulation problem

can be solved with the aid of one of the existing multibody

simulation codes such as DISCOS or TREETOPS. In order to use

these codes, the system is usually modeled in a NASTRAN-Iike

environment, so that mass, stiffness, and modal matrices (among

other quantities) are available for the free-free vibration modes

of each flexible body in the system. Additionally, these codes

require that a damping matrix be available for each flexible body

in the system. Since NASTRAN does not produce damping matrices,

5



these component damping matrices must be supplied by the analyst.

In general, it is desired that the damping matrix for the whole

system viewed as one, be a diagonal matrix whose elements

represent the damping ratios(usually 1%) for the retained modes.

To achieve this goal, the damping matrices for the flexible

components in the system must be selected judiciously. These

matrices cannot be arbitrary; they cannot even be diagonal.

What is attempted here, therefore, is to find a

scientifically sound method or methods for selecting the elements

of the component damping matrices so that the requirements on the

system damping matrix are met.

4.0 ANALYSIS

Consider a system S

consisting of n subsystems S i

(i=l,2,...,n) connected together

as shown in Fig. I. For each of

the subsystems Si, it is possible

to write:

M_i + C_i + Kixl - t_ (1)

And if body i has ni degrees of

freedom, then Mi, Ci, and K i have

F_ F2
S2

F3 S/__

dimension n i by ni, and are the mass, damping and stiffness

matrices respectively. F i and x i are row vectors of dimension ni

by 1 and represent the forcing function and displacement vector

respectively.

It is also possible to view the whole system as one

structure, and write



M_ + C:_ + Kx =F (2)

Suppose that modal analyses was performed for equation (2) to

produce the system modal matrix u. This implies the coordinate

transformation

x = uq (3)

Equation (3) can now be used to transform (2) into

l't] + c dl + kq = uTF (4)

where I is an identity matrix, k is a diagonal matrix with

kj=4 (5)

and

C = uTCu (6)

Normally, c is not diagonal; but it is common practice to assume

that it is, with

q = 2_jcoj (7)

where _j is the damping ratio corresponding to the jth mode of the

system. If it should become necessary to reconstruct the C matrix

from c, this can be done by pre- and post-multiplying equation (6)

by u and uT respectively:

C - ucuV (8)

Similarly, a modal matrix u i can be found for each subsystem, so
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that equation (i) can also be transformed into

llqi + C_i + kiqi = tTiFi (9)

where, as usual, I i is an identity matrix, k i is a diagonal matrix

and

Ci = uTCitl i (l O)

System NASTRAN models can be used to generate k i, u i, as

well as k and u. To characterize the system, multibody simulation

codes can only accept subsystem information as input. So that a

given simulation problem will require that k i, u i and c i (or M i,

K i and C i) be available, k i and u i are readily obtainable from

NASTRAN output, but c i will have to be determined by the analyst.

In general, the goal is to pick the elements of c i in such a way

that the system damping matrix c is diagonal, with the damping

ratio for each mode having the constant value of about 1%. In

other words, it is desired to influence the elements of c through

those of the matrices ci. To do this effectively, it is important

to understand the relationship between the ci's an c. That is, it

is necessary to examine the mathematics of the process by which a

given multibody code assembles its subsystems into the full

system.

4.1 5_U_b__y_tem As_9_blage Process

The analytical basis of the component assemblage process

leading to the construction of the system damping matrix from

component damping matrices is illustrated below with simple

examples.
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Consider the two planar systems A and B shown in Figure 2.

Each of the systems consists of two rigid rods connected together

by a one degree of freedom hinge; and motion about the hinge is

restricted by a torsional spring and damper system. All motions of

the systems are restricted to a plane. Each such system can be

viewed as a simple flexible body. Equations of motion for A and B

can be written in matrix form as

AI ' IAI
TAI

mBl, IBI

Fig. 2 Two Simple Flexible Bodies

]At 00 IA2
[ ll[bA -hA

_2 -bh bA
_lI [ kA -kA

+

6_2 -kA kA
iTA'=

Or2 TA2

(11)

and

0 IB2 32 -bB bB 132 -kB kB _2 TB2

(12)

respectively.



Now, consider A and B connected together at point P to form

one system S shown in Figure 3 below. There are at least three

ways in which the connection at P can be implemented:

• rigid connection

• frictionless hinge

• hinge connection with spring and dashpot.

The first option is of no interest here. Assuming a frictionless

hinge, the equations of motion of S, when viewed as one system

reAl, IAI

I

TA2 mBl, IBI

i

k B2' IB2

TB2

Fig.3 Combined System S

becomes

i0



IA1 0 I 0 0

I 0 0
0 - ]A2 !
0 0 _ In1 0
0 0 i 0 1B2

..

01.. [ bA -bA i 0 0

02 +.-bA bA 0 0

03 0 0 I b. -b.
.. 0 0 a -br_ b.

_04.

Oll

+ -kA kA I 0 0 02 =| TA2

"qkn- 03o ° r-k" / T.1
0 0 I-kB kB k TB2

_ 04J

01

02

03

.04_ (13)

Comparing equations (Ii) and (12) with equation (13) partitioned

as shown, it is immediately evident that the damping matrices in

equations (ii) and (12) are exactly the diagonal "elements" of the

system damping matrix shown in equation (13). There is, thus, a

one-to-one mapping between the elements of the damping matrices of

components A and B and the elements of the diagonal submatrices of

the system damping matrix.

If the connection at P between A and B is modified to

include a torsional spring-dashpot system, the equations of motion

are modified somewhat and is given as equation (14) below.

f IAI 0 10

0 IA2 I 0

0 0 I IB1

0 0 I 0

kA

+ , -kA
0

0

01

[ bA
+ . -bA

°- (o-
IB2 0

.04.

-k A I 0 0

kA+k I -k 0

-k 'kB + k-" --_,-

0 I -k. kB

-bA I 0 0 -] Ol.

bA + b I -b 0 "1 02b 03
0 I -bB bB .

_04

02= TA2

03 I TBI
TB2

_04_1

(14)

Here, both the diagonal and the off-diagonal submatrices of the

system damping matrix are affected. Note, however, that if b = 0

(no damping at the joint), then the one-to-one mapping described
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earlier is recovered. In practice, damping is rarely included at

such hinge connections of multibody systems. Hence, it is
concluded that for hinge-connected systems, changes in component

damping matrices have direct effect on the diagonal submatrices of

the system damping matrix• These effects are quantifiable

following the relationships given in equations (ii), (12), and

(13).

4.2 Selection of Component Damping Matrices

As stated earlier, a multibody system containing flexible

components can be viewed as one structure; and can therefore be

represented by equation (2) or equation (4). Given a desired

damping matrix for the system as a whole, our goal is to determine

the component damping matrices that will produce the desired

system damping matrix. The analyses presented in Section 4.1

above indicate a clear path to the solution of the problem if the

matrix C of equation (2) is the known or desired system damping

matrix. However, this is generally not the case in practice.

Normally, it is the diagonal matrix c of equation (4) that is

prescribed. Each of its diagonal element is assumed to be equal

to 2_i_ i, where _i is the natural frequency corresponding to the

ith mode, and _i is taken to be about 1%. Thus, it is assumed here

that

dt O]

C = d2

0 d.

(15)

with all the di's known. The matrix C can be found by using

equation (8). The elements of C can thus be shown to be

Cij = _'_ UikUjkdk
k=l

(16)
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where the uij's are elements of the system modal matrix. The

matrix C whose elements are given by equation (16), is now

partitioned according to the number of degrees of freedom of each

of the components ( see the partitioning scheme used in equation

(13)). The ith diagonal submatrix of C contains precisely the

elements of the undiagonalized damping matrix of body i. In

summary, the selection strategy consists of the following steps:

.

,

.

.

Assign values to system modal damping ratios; this

determines the elements d i of the system's diagonal

damping matrix c;

Determine the elements of the undiagonalized system

damping matrix C using equation (16);

Partition the C matrix according to the components'

degrees of freedom;

The elements of the undiagonalized component

damping matrix C i for body i is identical to the

ith diagonal submatrix of C.

Note that the component damping matrices that emerge from this

process are the Ci's and not ci's. This implies that component

information will then have to be supplied to the multibody

simulation code in the form of Mi, Ci, and Ki. All the codes that

we know of can accept component data in this form.

5.0 MINORITY EDUCATION COMPONENT

One of the most successful aspects of this project was its

education component. It was particularly successful in exposing

students and faculty at Tuskegee University to a current NASA

research topic. Three faculty members, two graduate students and

one undergraduate student participated directly in this project.

The two graduate students received their M.S degrees at Tuskegee

University with at least partial funding from this project. The

undergraduate student turned out to become the computer expert for
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the group; he has also graduated with a B.S. degree in
Mechanical/Aerospace Engineering (dual Major).

This project also contributed positively to the research
infrastructure at Tuskegee University. The grant made it possible

to purchase some critical computer hardware and software that were

used to start a small Laboratory in Systems and Structural

Dynamics.

Personnel Utilized

Senior Personnel

Dr. Fidelis Eke (Mechan. Engr.) - Principal Investigator

Dr. Estelle Eke (Aerosp. Engr.) - Co-Investigator

Dr. Olusegun Adeyemi (Mech. Engr.) - Senior Investigator

Graduate Students Supported

Mr. Busty Okundaye (Mechan. Engr.)

Mr. Sheng-Fang Shen (Mechan. Engr.)

Undergraduate Student Supported

• Mr. Steven Hill (Mechan/Aero. Engr.)

6.0 PRESENTATIONS AND PUBLICATIONS

A presentation of some early results of this project was made at

the Sixty-Seventh Annual Meeting of the Alabama Academy of

Sciences in March 1990 at Mobile, Alabama. An abstract of this

work is being submitted to the AAS/AIAA Conference Committee for

presentation at the August 1991 Astrodynamics Conference in

Durango, Colorado. It is planned to submit the same material to

the AIAA Journal of Dynamic Systems and Control.
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7 .0 CONCLUSION

The main goal of this research was achieved. Some insight has

been gained into the factors governing the selection of component

damping matrices for interconnected multibody systems.

Specifically, a workable selection strategy was developed for the

case where the interconnection between bodies is through

frictionless hinges - this is the normal assumption in most

aerospace applications.

This project was also quite successful in exposing students and

Faculty in a Historically Black University to a current NASA

research effort, and contributed to the development of research

infrastructure at the University.

8.0 RECOMMENDATION FOR FUTURE RESEARCH

Like all engineering results and techniques, the component

damping characterization method developed as a result of this

research effort cannot solve all possible damping characterization

problems under any circumstances. The two main limitations are

that the desired system damping matrix must be diagonal, and the

inter-component connections must be by frictionless hinges. These

restrictions do not constitute major shortcomings since many

engineering systems (and most aerospace systems) actually satisfy

the above conditions. Nevertheless, it is recommended that the

results obtained be extended to systems with other than hinge

connections. It is our belief that this is not only feasible, but

it can be done relatively easily from the current results.

At a more fundamental level, it is recommended that studies be

undertaken to quantify the actual impact on multibody simulation

results of errors in component damping, with a possible view to

developing "robust" simulation packages.
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